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I. INTRODUCTION

This report is the final report on Contract No. F44620—74—C—0057 to

study the application of ultrasonic elastic wave scattering to the detection ,

Identification and characterization of defects in solids. The contract was

initiated on February 1, 1974 , and terminated on March 15, 1977. During the

three—year period it entailed approximately 1—1/2 man—years of effort of

which approximately one—third was experimental measurement and two—thirds

theoretical analysis. During the first two years the theoretical analysis

was compared with experimental measurements , but it became apparent that this

approach was not adequately providing a validation of the calculations since

any discrepancies could be ascribed to various experimental shortcomings such

as instrumental sensitivity and angular resolution , lack of monochromaticity

in the transducer pulses , variability in the physical parameters of the

titanium alloys, and attenuation and scattering of the ultrasonic signals by

metallurgical inhomogeneities (second phases). For this reason the effort of

the third year of the program was entirely analytic.

1
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II. SUMMARY OF PROGRESS

The results of the first two years have been reported in two annual

reports [Cohen, 1975; Cohen , 1976] and an Interim report [Cohen and Tittmann ,

1975] and will only be summarized here. For details , the reader is referred

to the prior reports which must be considered as part of the full documenta-

tion of this contract. The theoretical results on the formulation of the

scattering of elastic waves will be reported here in some detail.

A. Scattering of Elastic Waves by Spherical Cavities and Inclusions

In order to verify the experimental techniques and to develop the necessary

theoretical basis , the initial task of this contract was the review of the

existing calculations of scattering by spheres [Cohen , 1975].

B. Scattering of Elastic Waves by Spherical Cavities

Spceimens of titanium alloy containing a spherical void of diameter

0.4 mm or 0.8 mm were prepared by diffusion bonding techniques . Experimental

data on the scattering of ultrasonic pulses by these cavities were compared

with the theoretical calculations. The data were in reasonable agreement with

theory. Discrepancies could be ascribed to the lack of monochromaticity of

the pulses at high frequencies, and to the scattering and attenuation of the

pulses by the metallurgical irthomogeneities in the titanium alloy [Cohen , 1975] .

C. Scattering of Compressional and Shear Waves by a Spherical Inclusion

A tungsten carbide inclusion (commercially—available tungsten carbide

ball , nominal diameter , 1/32” , 0.794 mm) was inserted into a diffusion—bonded

titanium alloy block. Measurements of compressional wave scattering were

carried out at nominal frequencies of 2.25, 5.0 and 10.0 MHz. The transducers

2 
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used had low Q (approximately 5) and hence not adequately monochromatic .

Because of this, waveform synthesis was required. The 2.25 MHz transducer

showed a characteristic with a full width at half maximum of 0.8 MHz. The

5 MHz transducers had a peak output at 4.5 MHz with a full width at half

maximum of 1.9 MHz, and the 10 MHz transducers peaked at 7.4 ~‘1Hz with a full

width at half maximum of 2.6 MHz.

Experiments with incident shear waves were carried out with high Q shear—

cut quartz plates bonded to the faces of the sample .

These experiments were in agreement with theoretical calculations ~f the

cross sections except for the amplitude of cross—polarized (depolarized) shear

wave scattering at 5 MHz. The precise reasons for the anomalous appearance of

this depolarized amplitude (an obversed scattered shear wave polarized at

right angles to the scattering plane when the incident shear wave is parallel

to that plane , which is forbidden by symmetry for scattering by a sphere) is

not understood but has been ascribed to the bulk scattering by the metallurgical

second phase in the titanium alloy [Cohen, 1976].

D. Reformulation of the Calculation of Scattering by Spheres

The analyses of Ying and Truel [Ying and Truel, 1956] on the scattering of

compressional waves by spherical scatterers and of Einspruch , Witterholt and

Truel [Einspruch , et al., 1960] on the scattering of shear waves , were rederived

in a unified format which makes possible several useful extensions [Cohen and

Tittmann , 1976]:

a. Both scattering processes are expressed in terms of the same basic

“scattering matrix” which allows the amplitudes of the spherical

3
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harmonics of the scattered wave field to be expressed in terms of

those of the incident wave field .

b. This same matrix applies also to the scattering of 
~~

y incident wave

field (not necessarily plane) and hence is in a convenient form to

permit the analysis of near—field scattering or the multiple

scat tering of two spheres.

c. The reciprocity theorem for mode conversion scatte r ing by a sphere:

K
2
~~~~ z

(o) = k2
~~~~(S)

may be established directly from the symmetry of the “scattering

matrix.”

E. “Corrected” Born Approximation

The Born approximation is based on an integral equation formulation of

the scattering process (see Section III.D below). The total displacement field

is expressed as a sum of the imposed incident field plus an integral over the

volume of the sc~ rterer which involves the displacement field in the scatterer

and the differences between the material constants of the scatterer and the

constants of the external host medium. The first Born approximation replaces

the displacement field in this integral by the incident displacement field .

The resultant expression for the scattering cross section is an adequate

approximation only when the properties of the scatterer differ slightly from

those of  the host medium. A correction to this first order Born approximation

has been developed [Cohen , 1976] which yields the exact long—wavelength limit

4 
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for the scattering cross sections for spherical scatterers for arbitrary varia-

tion of scatterer parameters. In particular , this corrected Born app roximation

gives the correct foward scattering amplitude for a spherical cavity in the

Rayleigh limit.

A further extension of the Born approximation , which is developed in

Section III .E be low , gives results which are exact in the Rayleigh limit for

scatterers of arbitrary shape (subject at most to the restriction of a smooth

boundary).

F. Variational Formulation

From a variational formulation of the cross section , a further extension

of the “corrected” Born approximation is possible. This includes the long—

wavelength extension mentioned in the previous paragraph for ~ 0. The range

of its applicability as a function of w (or of ka, Ka) may be partially

evaluated by comparison with the known exact solution for a sphere. Applica-

tion of this formulation to ellipsoids , in particular to ellipsoids of revolu-

tion, is underway. Further extensions which should increase the range of

applicability of this class of approximation are possible without sign if icant ly

increasing the complexity of the calculational algorithms . Details are g iven

in Section III.F.

5
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III. DETAILS OF THIRD YEAR’S RESULTS—-GREEN ’S FUNCTION ,
RECIPROCITY AND THE BORN APPROXI MATION FOR THE
SCATTERING OF ELASTIC WAVES

A. Differential Equation and Green’s Function

The displacement field u in an elastic medium satisfies the equation

p~ti (r) = (c •u . + f (1)m —  ‘~ mSpj p , j / , s m

where f is the applied force field . In Eq. (1) the elasticity tensor

c .(r) may be a function of position . For an isotropic medium C
uispj — mspj

given by

c • 
= 6 . + i~i ( 6  6 . + 6 . 5 ) (2)

nipsj ms pj mp sj mj sp

and for any arbitrary medium c i must satisfy at least the symmetry with

respect to interchange of indices expressed in Eq. (2); i.e.,

C . = C  . = C  .mspj smpj  ms~ p pj ms

For displacements which are harmonic in t ime with frequency ~ Eq. ( 1)

becomes

(c  .u .) ± Q’J)
2
u + f  = 0  . (3)

mSpJ p,j ,s m m

The Green ’s function for the system is defined as the displacement field pro-

duced by a delta function impressed force at the point r , and hence G~~(r;r )

is the solution of the equation

6
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(~~ 
.Gn • ( r ; r  )) + pw

2
G
n (r;r )  + S S ( r — r  ) = 0 (4)

Ins pj P,3 — —0 
,~~~ 

m — —o ma —

The Green ’s function can in principle be defined for an inhomogeneous aniso—

tropic system as the solution of Eq. (4), but it is useful for our purpose of

exp loring the scattering of elastic waves to r es t r i c t  the Green ’s func t io n to

the solution of Eq. (4) for an infinite homogeneous isotropic medium , and

hence to consider only the Green ’s function which is the solution of

(X+~)G~ (r;r ) + ~G
’
~ (r;r ) + ç

~~ j
2~~~fl

(
~~~

;
~~ ) + 5 f(r-r ) = 0 (5)

o,pm — —o m ,pp — —o Tn —o ma —

with the boundary condition

lim G~ (r;r  ) = 0 . (6)
rj~~~~

r n_ _ o

It is clear that the solution of Eqs. (5) and (6) possess translational

invar iance and reciprocit y :

t
G~ (r;r ) = G”(~r—r I) = GTn (~ r — r i )  (7)
m — — o  m — --o n — o —

The Green ’s function can be explicitly written [Morse and Feshbach , 1953;

Gubernatis , et al., 1976]

—iKR 2 —iKR —ikR ’
~

G~ (Ir-r 0I) = G
jm

(R) = 

4~~~~2 [K
2
6~~ 

e 
R 

+ 
R 

- 
e 

R
(8)

We now introduce the spherical Bessel function h (z) and write

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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G
~~

(R) = 
1

2 [K
3
5
jm
h
o
(KR) + 

~x~:x 
{Kh0

(KR) - kh
o
(kR)}] (9)

where K and k are the wave numbers for shear and compressional waves ,

2 2 2 2
K = Qw /1~i , k = p

~ /X+2p . (10)

and

h ( z ) = ie
_1Z

/ z  = j (z)  — iy (z) . (11)

We sha ll also make use of the Bessel function relationships

h 1
(z ) + h~~1(z) = ~~~~~~~~~~~~ h ( z) (12)

and , with R
2 

= x~ + x~ + x~ ,

~ 
h
n

(kR) h~~1(kR)
— —kx . (13)
~X . R~ ~

Using these expressions , we may write Eq. (9) in the form

G (R) = 
1 

I5 • ~2K
3
h (KR) + k3h (kR)~jm l2Tripw

2 
L ~~ 

° 0

3xjx
+ ( 

R
2 
m 

- ~. )  ~K~ h2 (<R) - k
3
h
2

(kR)~ (1~)

8
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The symmet ry and reciprocity relationships of Eq. (7) are immediately

evident in the explicit form of Eq. (8) or Eq.  ( 14); however , a much more

general reciprocity expression may be developed di rectly f rom Eq. (4) for

the general case [Knopoff and Gangi, 1959; Cohen , 1976]. We .rewrite Eq. (4)

with a slightly different notation

(c .uV .( r ; r  )) + pw
2
u
V
(r;r )  + S S(r-r ) = 0 (15.1)mspj p ,.j — —1 , 

S m — —1 my -l

where u
V
(r;r

1) is the displacement ar r resulting from a unit force in the

v—direction at r1, and

(c .u~ .(r;r )) + p~
2
u~ (r;r ) + S 5(r-r ) = 0 . (15.2)mspj p,.j — —2 ,s m — —2 m~i — —2

If (15.1) is multiplied by u~ (r;r2) and (15.2) is multiplied by uV (r;r
1
) and

the two expressions subtracted , one obtains

J’ [(cms~~
u
~~j 
(
~
;
~ 1)),5

u
~(r;L2

) — 

~~~~~~~~~~ ~~~~~~~

~~ 
~~2 ~

) - ~~ 
~~l 

‘-~2~

= fcmspj (L
) [u;~~ ;.~7)u~ j

(
~
;I
~l
) — ~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— 
~~~~~~~~~~~~~~~~~~~~~

(16)9
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Now, from the symmetry of the elastic coefficients the final integral vanishes.

If the region of integration extends to infinity the surface integral vanishes

since the elastic displacements vanish (at least as fast as l/R) as

and L~i~2 I go to infinity. If the region is finite we assume the usual homo-

geneous boundary conditions such that either the displacement , u (r), or the

normal stresses , T = t n = c •u .(r)n , vanish on the free surface.*m m e s  mpsj p,j s

In either case, one then obtains

U
~~~ ~-~2 ~~~ 

= uy 
~~l 
‘!~2

) (17)

Note that whereas the reciprocity of Eq. (8) applies only to an infinite iso-

tropic homogeneous medium , the reciprocity of Eq. (17) is completely general.

B. The Integral Formulation of Scattering

The simple solution of Eq. (14) applies to an infin ite homogeneous ,

isotropic medium . Although such a solution has only a limited ideali zed appli-

cation per se, it can be used as the basis for an important extension of the

analytic description of wave propagation in inhomogeneous elastic media. We

assume that the medium of interest is isotropic and homogeneous for R °°,

but that in the vicinity of the origin there is an inhomogeneity which is the

cause of scattering of elastic waves. We denote the “unperturbed ” region by

*The more general condition , that everywhere on the boundary we have
c~u + ~r n  = 0, in which c~ and 3 are arbitrary (but fixed) scalar parameters
wh~ch may depend on position or on the component m , also leads to the vanishing
of the surface integral point by point. The condition may even be further
generalized to the extent that ct or ~ may be taken to be symmetric matrices ,although such generalization is probably physically artificial , except for the
the case where ct and ~ are diagonal.

10 
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the density p° and elastic constants c° and write

= p0 
+ i~p(r) 

(18.1)

0
c Cr) = c + t~c (18.2)
mspj — mspj mspj

The equation for the displacement field in the absence of applied forces

is

(c ~u .) + poi2u (r) = 0 . (19)
mspj p,J,s

This is then written in the form

(r) + p
0
w
2
u (r) + (~ c ~u . ) + ~Ow

2u (r) = 0 . (20)
msp~ p,js — Tn — mspJ p,j ,s m —

When Eq. (20) is compared with Eq. (3), it is clear that the last two terms

play the role of an impressed force on the medium (albeit one whose magnitude

at each point is dependent upon the displacement field ~~ that point). I f

is given by Eq. (2) we can wrice a formal solution in terms of the

Green’s function for the homogeneous isotropic medium . We are interested in

describing the waves scattered by the inhomogeneity; we therefore express

u (r) as the sum of the incident field u°(r), which is the wave field in the

infinite homogeneous medium , and which satisfies the equation

o o o 2 o
c .u . Cr) + p w u (r) 0 , (-1)mspj p,js — m —

11
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(s)and a scattered wave, u
m 

(r) generated by the inhomogeneity,

0 (s)u Cr) = u (r) + u (r) (22.1)m —  m —  m —

(s) 

~ = f G~ Cr; ~)[( ~c (r’) u (r’)~ + 
2u u Cr)

Tn L ‘JSpJ — p,j I ,s — —Tn

= JG Cr-r’) ~~ (r’)u (r’)~mu — — [ uspi — p,j —

+ w 2
~p C~5u y (~)1di~ (22.2)

The integral in Eq. (22.2) in principle extends over all space but since

~c (r’) and ~p(r) are such that they vanish as r’J ‘
~~~~~ the integral invspj — —

actuality is limited to a finite region of space. The scattering cross sec-

tion, by definition , is evaluated in the far field (i.e., at a position which

is far removed from the inhomogeneity which is scattering the elastic waves).

In defining the scattering cross section one therefore needs the asymptotic

behavior of the Bessel functions . These are

— iz
h Cx) = 

ie 
(23.1)

0 z

—iz -
h2(x) 

= 
le 

~ ~~~
• 2
iz — z (23.2)

z -

and hence , from Eq. (14)

x x \  x x  1
1 

— 
j 2 —i~R + 

j.~j~n 2 —ikR 1

~m 4~ ,ow R jm R
2 / K e R

2 
- 

(R2)
k e  +~~~~ 

—G (R) = 2

12 
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and therefore with , r = r~ ,

u~~~(r) = u~~~Cr~) = 1 ~~ — 
~~~~~~~~~~~

+ k
2
c2.~3 e

i1
~~U .(kc~)] + o(~4) (25)

or

= I[k
2c.u (k~)2e

h1
~ + <

2Qx1(KQ)xPe
_lK

r] + 
o(4) 

(25.1)

and

= 

4Trpw
2 Je~~~~~~ cj spn~~~ up , n~~3), s

+

where q may be either K or k. Then set q~ and write

U
J (& 

= 
l
,f 2 ~ P(tJ)u .(~ ) - 

~~~~~~~~~~~~~~~~~~ e r~d~~ (26)

The strain field u
j~~ 

can most easily be written in terms of the dilatation ,

E u , and the “deviatrix ,” E . E Cu . + u •) — 1 
~~ , whichs,s js 2 j,s s,j 3 js

represents a pure shear; then

13
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c u = c E + c . (27.1)
sjpn p,n sjpn pn 3 sjpp

which , for an isotropic medium , becomes

c u = 2~iE + (x + . (27.2)sjpn p,n sj \ 3 / sj

and X + K is the bulk modulus.

Equations (25) and (26) therefore give the scattering from a defect or

inhomogeneity in an infinite homogeneous isotropic medium in terms of the

displacement and strain fields within the inhomogeneity. To find u .(~ ) and

u (r5 , however , it is necessary to obtain the solution of the “internal ”

field defined by Eq. (22). Equation (22.2) is first integrated by parts to

give

= ~~~~~~ C!) + u
2 
fG . (r-r~)E~P(r’)u. (~5d~

+ (C . (r-r5 ~ ~~ (~)E (~ ) + ~ c. (r’)~~(r
’)~ dr

’ (2 8)
-, tnj ,s — —  isp n —  p a —  3 jspp — — (  —

C. Scattering Reciprocity

Equation (17) defines a reciprocity relationship between the displacement

field at point produced by an impressed force at and the displacement

field at r2 produced by an impressed force ar r1
. It is also convenient to

have a reciprocity condition which applies directly to the scattering cross

section and the scattering vector defined in Eq. (25).

14

— . - . , _ .~~~~~~-~~~~~~~~~~~~~~~~ -_ -.- _
~~~~

-_.-_ -. -~~~~~~~~~~~ ,. --- . -



F ~~~~~~

.- -
~~~~~~~

. _ _ _ _
_ _

Science Cent.,

SC579 . 4FR

We consider a scattering region near the origin of a coordinate system

and two points = r 1c2 1 and 
~ 2 

= r
2~2. We assume that r

1 and r2 are both

large compared to the dimensions of the scattering region and with respect

to the wavelengths of shear and compressional waves in the medium (Fig. 1).

We describe the reciprocity statement of Eq. (17) to be composed of two

components——the direct propagation of the wave field from point 1 to point 2

and a wave field scattered to point 2 by the scattering region . Then we can

write

u
~
(r
2
;r
l
) = G~~~r2-r1~

) + u
~~~

(r
2

) (2 9.1)

where u~~
’ is the displacement field at r which exists because of the

u —2

presence of the scatterer. Without any loss of generality , one can describe

as the result of a scattering of an incident wave by the scatterer ,

= ~~~~~~~~~~~~~~~~~~~ (29.2)

where we have introduced the minus sign to indicate that the incident wave

(1)
is moving in the —

~~~ direction . Similarly

u~ (r1;r2
) = G~ (Jr 1—r2 f) + G

~
(r
2
)W~(L1

;_c2~
2
~ ,r2) 

(30)

In writing Eqs. (29) and (30), we have done no more than define new quantities

w~(r2
;_~~

1)
,r1) and w~(r1

;Lc~
2)

,r2). We are interested , however , in the

limiting case r
1 ~°°, r

2 ~°°, and in this limit ~Y(r ;_
~
Cl)

r )  will be inde-

pendent of the magnitude of and similarly w~(.~1
;_~~

2
~ ,r2) will be independent

15
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of r2
. Since Eq. (17) is valid for an arbitrary inhomogeneous elastic medium ,

it is also valid for the specialization to a localized inhomogeneity. Further-

more, the Green’s function for the infinite homogeneous , isotrop ic medium is

symmetric so that we have

~~~~~~~~~~~~~~~~~~~ 
= 
~~~~~~~~~~~~~~~~~~~ 

(31)

In the limit as r1 
and r2 become large, 

Eq. (31) leads to

r2[K2(5y~ 
- 

1
K~~1 

+ k
2Q~~~~~~~e l]W~(r2

;_~~
1),r1)

= rl[K2(5~~ 
- ~ (2) Q ( 2)) e

_ iK r 2 
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(32)

Now w~(~2
;_
~~~) and w~(~ 1

;_~~
2)

,r2) can be decomposed into longitudinal and

transverse components. Ar large distances w~(r2;
_c20~~,r1) must behave as

lim w~(~2
;_~~

1)
,r1)r r - ~~1’ 2

= 

~~iK
2(5

~ s 
— c2(2)c2(2))Ua(c2(2) t;_~(l))e~~~~2

± k
2
~~

2 2
~U~ ~~~

2)
,~~; _ ) e

_

~~
r
2} (33)

16
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(where we have introduced the additional descriptor Z or t to emphasize the

longitudinal or transverse components of the vector TJ~), with a similar

expression , of course, for W~ r1
;—~~

2
~ ,r2 

. Equation (32) can then be

decomposed into the form

K2(Sva - ~
(l)

~~
(l)){K2(5 - ~(2)~~(2))UG(~~

(2)
,t;_~

(l)
,t)e

_iK (r
l
+r2)

+ k
2 2) 2)

~G(~~
(2) 

,j;_ç~
(l) 

,t)e
r k r

2}

+ k
2
~~

1 (1){K 2(5 — c~
(2) Q(2))Ua(~~

(2) 
t — c ~~~~ ,Z)e

k1
1
_

~~
r
2

+ k
2
~~
2 2 ) U~~~~

2)
,i;_S3

(1
~i)e l 2 }

= K 2(5~~~~5
5 

- 
2)
~~
(2)){K2(S - ~ (l)~~(1))Us(~ (l)

,t;_~
(2)

,t)e

_iK(r
1
+r

2
)

+ k
2
c c~0~

1-
~’(u~ ,z;_

2)
,t)e

2
_1l(t

~1

+ k
2
~&~
2)f2~2){K2(5ya —

+ k
2
~~~~~~

1) U (1 ) ,Z;_
2)

,Z)e
l 2  

. (34)

From this we obtain the fundamental scattering reciprocity relations

17
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~~~~~~~ ,t ;_ c~~~~ ,t) = u (c  
1
~~,t ;—c ~~

2
~ ~t) (35.1)

= u~ (~~~
) ,~~;_a (2) , z) (35.2 )

u ( ~~
2
~ , t ;—c ~~~ ,z,) =  us(c ,~ ;_c~ 2)

t) (35.3)

or simply ,

= 
u (

;_ c ~~~~
2)) (35)

(The fourth expression which can be obtained from Eq. (34) is equivalent to

Eq. (35.3) with s and ~ and (1) and (2) interchanged.)

The scattering amplitudes W~ defined in Eqs. (29) and (30) and their

decomposition into longitudinal and transverse components if defined in Eq.

(33) refer specifically to the scattering associated with an incident field

of unit amplitude. The incident wave will then carry an energy flux per

unit area given by

in 3 inQ = pw /q (36.1)

where q~~1 is the propagation number (either k or K) of the incident wave .

The scattered energy flux per unit area normal to the direction n is given

by

18
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* .  *Q = —Rea u~ = wlma .u .n njj njj

= wlm [(A + 
2 )* + 2~E*.u.] (36.2)

In the far field we use Eq. (25) and obtain

= 
-ik3 

~~U ( k ~)e~~~~ + a (
~

) (37.1)

and

2E . = - ~~ S. + Q .5 - 2~ f2 .~ )U (K~ )e~~~~113 r~~ a]5 jns n j s  s —

+ 2k3(~ ~~~~. - I 
~ 

U (k~)e~~~~] 
+ o~~~~

_
~ (37.2)

f i  ~ ~fl 
s s  —

The scattering cross section is defined as the far field scattered energy

flux per unit solid angle divided by the incident plane wave energy flux per

unit area

S(~) = lim r2~ Q
— 

Q
ifl ~~~ a n

= 
q lim r

2
tm[ (~. + ~ ) E ~~~ u + 2~~2 E*.u.]L 3 m m  m m J j

= q
in
[k
3~c~ U ( ~ç~)I 2 + <

3

~~ms ~m~s
Us~~-~ l

= q
in
[k

3~~~U (kc~)~
2 

+ K
3
~U(Kc2)~ 

- K
3
V~ U (K.Q)~ 2] (38)

19
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which may be written

S(~) = q~n [k
3~~.U(~~ )j

2 
+ K3 I c2XU(K~ )I 2] (38.1)

It is clear from Eq. (38) that the vector U(a) contains all of the

information in the displacement field u at large distances from the scattering

center and contains it in a form which separates the purely geometrical aspects

of the scattering from the properties of the scatterer .

It is useful to further decompose the scattering cross section into the

shear and compressional wave scattering. We then write

~~~~~~~~~ = k4I~~~~~~u a
(k~

sc
;_kf2

in
)I
2 

(39.1)

~~~~~~~~~~~~~~ = kK3((6 — ~~~~~~~~~~~~~~~~~~~~~~~~~ (39.2)

s
t
(~
sc

;~~
n) = Kk3~S~ 

c (5 — ~~~~~~~~~~~~~~~~~~~~~~ (39.3)

St~ t(~
2sc ;~~~

l
) = K

4
1 ( S  — Qsc~ :c ) ( 5  — ~~~~~~~~~~~~~~~~~~~~~~

(39.4)

and we obtain the reciprocity theorems for scattering

20
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= S
~~~
(
~
2
2
;-
~1
) (40.1)

~~~~~~~~~~~ 
= 

~~~~~~~~~~~ 
(40.2)

k2 S~~~
(c

~1
;_c? 2 ) = K S

~.÷i
(
~ 2

;_c
~1
) (40.3)

D. 
- 

The Born Approximation

The scattering cross section may be calculated from Eqs. (22), (26) and

(38.1) . The Born approximation in its simplest form assumes that the scattered

wave, u~~~(r) may be neglected in (26) and that u (r) may be approximated by

the incident wave u~ (r). We now write the incident plane wave as

u~~(r) b e ~~~~~~~ 
(41.1)

with the understanding that one characterizes the longitudinal and transverse

waves by the relationships

longitudinal: q~
11
q~~ = k , b q ~~ = k , b b  = 1 (41.2)

thin 2 in
transverse: q = K , 

~~~~ = 0 , b b  = 1 (41.3)

The scattering amplitudes in the Born approximation are therefore given by

the following expressions [Cohen , 1976; C,ubernatis, et al. , 1976], when the

scattering inhomogeneity is -estricted to be isotropic:

21
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(a) Incident Longitudinal Wave

= cos~ 
- 

A±2~ [~d 
÷ 2f~ (cos

2S - (4 2.1)

f f
U = —

~~ sinO — 
~~~ —

~~ sin2G (42.2)
Z-~t P K 1 . 1

in sc
where S is the angle of scattering , cosS = f2 . ~2 .

f~ (K) = f~p(r)e~~~~dr ; K = q
sc 

— (43.1)

= -i_ f [ ~~~x ( )  + 
~~

- 

~~~~~ 
e~~- -~ar 

(43.2)

f ( K)  = ~~~f
(r)e~~~~dr 

(43.3)

Hence, these functions are the Fourier transforms of the perturbation

of the density and elastic constants in the scatterer.

(b) Incident Transverse Wave (Plane Polarized)

= cos4~~ sinS 
- 

~~ sin2O] (44.1)

= cos~[~~ 
cosS - ~~ cos2S] (44.2)

f
= - ~~ cosS] (44.3)

22
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where .~ is the angle between the plane of polarization and the

scatte r ing plane , and 
~~~~~~ ~~~~ are the scattering components

parallel and perpendicular , respectively, to the scattering plane.

Cc) Incident Transverse Wave (Circular Polarization)

~ e4~~ sinS 
- 

~~~~~~~~~~ 

sin2O] . (45.1)

U
~~+~ 

= 4 ~~~~ E(cose + rs) -~~~~ 
— (cos2S + rscos~) —~

] (45.2)

1 —ire I
= ~~- e (cosS + rs) — (2cosS — rs)

where r = ±1 gives the polarization of the incident wave and s = ±1

that of the scattered wave. We note that for forward scattering

there is no depolarization (s = r, only) while for backward scattering

there is total depolarization ,(s = — r , only).

To extract the scattering cross section from the scattering amplitude

one has

S(~3) = q
in

q
sc~q

sc~ j
2 (46)

E. Improved Born Approximation

The expressions given in the previous section are valid only for a

limited range of parameters. In general , one must restrict their use to

cases not only for which ~a is small (where a is a characteristic dimension

23 
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of the inhomogeneity) but also for which the magnitude of the perturbation ,

~p(r)/~ p, l~ c(r)/cI is also small. This latter constraint is the more

serious one since it means that the Born approximation is inapplicable to

most problems of interest to NDE , where the most common scattering center

is a void , for which i~p = —p. The Born approximation , in replacing u (r)

by u°(r) assumes that the integrals in Eq. (28) may be neglected . This is

an acceptable approximation for u (r) but it is not acceptable for its

derivative or for E .(r). To see this we note that u (r) will involve
Tn] — fl1,S —

G
~~~~5
(!) which , as may be seen directly from Eq. (5), must contain delta—

functions.

Specifically , we find , as extensions of Eq. (14)

G . (R) = 
1 

[K~ h (KR) 6 . - S . + x .x ~~°~(R)] (47)
JTfl 

~~~~~~~~ 
L 0 jm jm 1 m 2

wher ,~

= —
~~~~ [K ~

1h ( R )  - k l
~~ h (kR)] (48)

From Eqs. (12) and (13) one finds

= 2n+ l [R
2
~~~~~~ + ~

(P+2)(R)] (49.1)

= .4 [n_l)
~~~~ (R) — ~,(p+2) 

CR)] (49.2)

_ _ _ _ _ _  = R = -x ~
(p) (50)

— ~fl ,5
( ~ s n+l

S

24
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and

G
~~~5

(R) = 

4~
•pw

2 R 
h
i
(KR)x

~
S
~~ 

+ (x~S~~ + X
m
Sjs  + x 5S

~~~)4°~~
(R)

~~~~~~~~~~~ 
(R)] 

(51.1)

1/ 4 5
c = 

1 (s— h (KR) S + s— h (KR)x x
~m ,sp 4~ffip(A)

2 L\R 1 ~~ R
2 2 s p jm

+ 
~~~~~~~~~~ 

— x~~5~~~~
0) R + x~ x~ xsx p~~

0)
(R)]

+ ~
(R) [~ (K

2 
- k

2
)~~. 

- I K

2

5 S
~~2 L15 j m sp 3 j m sp

= ~ [_ ~~ s~~ (KR) S . ~ + ( 
- 

~ ~~~~~ . K
5

h (KR)

iz~~.~~
2 L ° ~~~ ~~ \ R~ 

sp, jm 2

5X. x .x x x  i

+ 3~~ . — + ~~~~ 

1 Tn 5 p ! O ) (R)
R R2 ~ 2

x . x x x
+~~X . - 10 

m s p

R
2 

~ 
2

+ 
r~1:~

sP 
- 

~~

+ 
~~~~~~ 

[_ L (K~ 
— k

2
)~~. 

— I 2. 
(51.2)

15 jmsp 3 jm sp~
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where the delta function is defined such that

R35(R) = 0

4JrfS(R)R
2dR = 1

The 
~jmsp 

and X i are totally symmetric expressions , [Cohen , 1976]

= 5. 5 + 5 . 5 + 5 5 (52.1)
.lmsp jm sp js mp jp sin

X . x .x S  + x x 5 . + x . x S  + x x 5 . + x . x S  + x x 5 .
~msp j in sp 5 p 3m 3 S mp in p js j  p ms m s jp

(52.2)

with the properties

= ~~~ . = 5S . , = 15 (52. 3)
3m 31555 jm ss

X . = X . = R25 . + 7x . x , X = b R
2 

(52.4)jm jmss jm m ss

Therefore , the first curly braces in Eq. (51.2) vanishes if contracted .

Since it may be verified that , for R 0,

2
-k 

0n 
R
2
~~

1

- k~

it is seen that C (R) R 2 
and C R 3.jm ,s j rn,sp

26
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Equation (28) may be differentiated to obtain

u
rn ~(!.

) = u~
0
~,(!) + uJ2JG ~~~~~~~~~~ (~5dr’

+ fGmJ,sp
(
~
_
~5 

A(
~55~5c~~5 + ~~~~~~~~~~~~~~ . (52)

We define symmetrized functions

CR) = . (R) = I [G . (R) + G . CR)j;mp mp;j 2 L fl13,p pj,m

= 

4~ipw
2 [- ~~ h1 (KR) ( x S .  + x S .)

+ (x~ 5 + X
m
S
jp + x d .)~~~°~~(R) - x . x x ~~~~

0)
(R) ]

(53)
and , with the delta—function component omitted ,

CR) = I [G . (R) + C . (R)mp;js 2 L mp;j ,s mp;S ,j

r
= 

1 — 
~~~

— h (KR) (cS 5 . + 3 . .S )
2 I 2R 1 ~~~5 3m pj ins4r~ip~ L

+~~~~~~h (KR) (5 ~~~ + 3 . x x  + S  x . x +~~ x x .)
4R 2 2 3Tn 

~ 
5 jp m S In S 3 p ps m j

+ ~~ ~~°~ (R) - x .  ~~°~ (R) + ~~~~~ ~~ ~ ° l  (5~~)jmsp 2 3msp 3 j m s p 4
-J

27
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We now introduce an operator notation which can be defined in an obvious

way by

~cmj
u j ~2fG15j~~

_
~~~P~~3uj

ridr
t 

(55. 1)

~ EJG (r-r5~ c . (r5~~. (r5dr ’ (55.2)in;js js m;pn — — pnjs — js — —

~~~ ~ ~ ~ 
(i.

_
.~) ~~ 

(.~5 uj ~ d~ (5 .

~mp;js~js ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (55.4)

Then Eqs. (28) and (52) lead to

u
~(!.
) = u~(!) + ~~~~~ + (56.1)

0
~ (r) =~~ (r) + ~~~ ~~~~~~~ . c .mp — isp — mp;j 3 mp;js JS

+ 

15pw2 [
~~2 - k

2)S
15p~

c
1111j5 

- (3K
2 
+ 2k2)~ c15pj5]~~ 5(!)

(56.2)
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where the final term in Eq. (56.2) arises from the delta function in Eq. (51).

Introducing the shorthand notation ~ = V u~ + ~ . c .  for the
isp mpj 3 mp js js

integral terms in Eq. (56.2) gives, formally , an algebriac matrix equation to

be solved f o r  E (r). However , in the case where ~ic . is isotropic thisrnp — mp3s

system can be diagonalized. In the isotropic case , which is the only one we

shall explore in detail from this point on, Eq. (56.2) is

c (r) = 
0 

Cr) + ~ 
- 

1 [5K
2
~X ( r)~~(r)S - 2(K

2 
- k

2
)~p(r)c(r)5mp — isp — mp 15pw2 L — — mp — — mp

+ 2(3K
2 
+ 2k2)~p (r)E (r)] (57)

Evaluating the dilatation and deviatrix of this expression gives

~A(r) + ~iCr )
~ (r)  = 

0 ( )  + — a(r)c(r) ; a(r) = 
x + 

(58.1)

E
15~ (!) = E~~ (!~) + ‘imp 

— 4 ~~ss 5nip 
— b (r) E

mp 
(
~

)

b(r) = 
i 5 )~~~) 

Aii (r) (58.2)

and hence

~mp~~ 
= 
1+b (r) [~~~~r + 

~~~ 
+ 4 ~(r)(c°(r) +

ct(r) = 
b(r) (59)
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The integral equation (59) is not yet in a convenient form for a Neumann

expansion since 
~ 

still involves integrals which do not vanish in the limi t

as the characteristic dimension of the scatter goes to zero , although for th~

special case of a sphere (because of its symmetry) those integrals van [sb .

In that one case , then , using C = ÷ 4 ac°(r)5 ) in Eq. (26)
gives the “corrected” Born approximation [Cohen , 1976; I~al and Knopoff , 19761.

In order to evaluate the complete first order approximation to the strain

field inside the scatterer it is necessary to evaluate the lowest order

contributions of the integrals c~315p. 
and hence , equivalently , the long—wavelength

limit (static) Green ’s function. If we assume the long—wavelength limit , then

u (r) will be a slowly varying function of position within the scatterer and

we may use a mean—value theorem to remove u (r) from the integrals. Further-

more , we may use Eshelbv ’s result that 
~ 

is constant inside a homogeneous

ellipsoid in the static limit and remove it from the integral in that case

without resort to any approximation. Then, keeping only those terms which 
V

can contribute in lowest order , we may write Eqs. (58.1) and (58.2) in a con-

venient symmetric form:

(l+a)c(r) = 
0 ( )  + (~ + 

~ ~i.i)gC (r.
) + 2~ .i5~~E. (r) (60.1)

(l+b )E~~ (r) E~~(r) + ( AX + 4 Ai~)g c(r) + 2Al•1~~p;j5Ej5
(.~.) (60.2)

where the integrals are defined by

30
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g =f~pp;jj(~
_
~)d!~ (61.1)

g =fc . .(r-r~)dr
’- 1 gS (61.2)mp mp;jj — —  — 3 mp

g . = C . (r—r’~dr
’ 

. (61.3)mp jS .1 mp ;3s —. — —

We note that it is possible to write g. in Eq. (60.1) as the same functional

expression as g
15~ 

in Eq. (60.2) because of the fact that E .5 has zero trace .

Therefore, adding the term — 4 3
js~pp

;nn
(r_

~
)E
js
(
~
) in Eq. (58.1) adds nothing ,

but allows the symmetric structure of the equations. In fact , since

~pp ;1111
(R) = ~~~~~~~~~~~~~~~~ is a lover order singularity , its contribution

to g. is ~Xk a ) and hence vanishes to second order. One must be cautious

here; Gpp;1111(R) still contains a delta function , —~5 (R)/t~)+2u), which is , of

course, not a lower order singularity and cannot be neglected.

The integrals must now be evaluated in the long—wavelength limit.

Expanding the Bessel function gives us

I / 3 x .x ~~~2 2
C . = 

1 1 (2K2 + k2)5 ~( 
] m — )K — k 

+
~~ 41Tpt~

2
R L3 jm 

~
‘ R 3m , 6

rI / x x ~~ ,‘ x .x \
1 K (s . + _ j m j  + k2(3 . - _.l~~~~ + (~ 2 .1)

8rpw R L ‘~ ~~ R / ~ ~~ R~ 
/ j
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or , in the long—wavelength limit ,

X . x
= 
8~~~(~ +2~~)R [(X+3~ )5 . + (X+~ ) 

~~~~~~~~~~~] 

. (62.2)

I x .x x x x

~js;m~~ 
= 

8~pw
2
R3[ m (J s 

- ~ 
R)~~~ 

+ k2(3 
R
2 

— x
j~ ms

-x
s
Smj

_x
mSjs)+ ...]

(63.1)

and 

G~ = 

8~U(X±2U)R
3 + S x ~~) + (X+~ )x

(3 ~~~ 
- (6 3 .2 )

3 0 x x x .x

~mp;js~~~ 
= 

1
2 3[K

2
~ 2S

InP
6
l5

_ 
~~ 

(x~x~S~5 
+ x

j
x
s
S

mp 
+ X

~~~5
) +

X . l5x x x .x
_2k2

~Ampjs 
- 3 + 

R~ 

1 ~ 
+ •] (64.1)

Gmp;js 
= 

l6~~ (A±2p)R
3 [2~

A
mpjs + X

mpis 
- 
30(~+u) x

m
x
p
x
j
x
s

/ X . x \ / x x
+ (X+2~)

’ S (3 ~~~~~~~~~~ — 2~~ J + (3 ~~~~ —mp~ R
2 j~~~~, ~ R

4 ~iv is

(64 .2 )
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In these expressions only the lowest order terms have been retained; the

Green ’s function is, to this order , the Green’s function for the elastostatic

problem [Eshebby , 1961; Love, 1934].

We now use the divergence theorem to convert these integrals into surface

integrals and evaluate them at the center of the ellipsoid. This transforma-

tion, however, recaptures the effect of the delta function in C . and it
nip ; js

will therefore be necessary to consider a small sphere which excludes the

origin as part of the surface of integration or -eo appropriately modify the

equation in order to avoid including this contribution twice. We shall choose

the latter approach and merely insert the modifications later. Then

g - = if~~
o 

.(r’)n + ~~ (t~)n.~ dS’mp;js 2 L mp;j — 5 mp;s — 3 2

= 
l6~U(X+2~)f[~~

5jrnxp
n
s 
+ 5 . x n  + S x n . + S x n .)

‘3 x x
+ (X+ii)(n x + n x .) ~ - 5 ~~

-
~~

- . (65)
3 S  ~~ R

2 mp 
R3

For an ellipsoid defined by V

x1 
= a

1
sinscosq

2 2 i 2  2 2 2 . 2~~ 2x2 
= a2sinOsin~ 

, R = a
3 

+ ~a1 
— a

3 
+ (a

2 
— a1)sin ~)sin ~ (66)

x3 
= a

3
cosS
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the normal surface vectors are given by

a
1
a
2
a
3

n .dS = 2 x
1
sin6d0d~ , (67)

and g . can be expressed in terms of two classes of integrals
nip ; 35

= 
(a1

a
2
a3)~~

3 
fxm

x
p
sinOdOd

~ , (68.1)
isp R

3

(a a a ~l/3 fx x x~x sinOdOd~
K . = 

1 2 3’ j  15 p ~ . (68.2)
mp3s 47r 

R
5

From symmetry we find immediately that is diagonal and that there are

only six independent non—zero components for Kmpjs~ 
Using six—vector notation

with mp -
~ ct, is — B we see that K . may be written

K
1 

K
6 

K
5

K
6 

K
2 K

4 
0

K K K
K . = K  = ~ ‘~ ~ (69)
nipjs 

~~ K4 
0 0

0 0 K
5 

0

0 0 K
6

and therefore
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2/3

~~p;js 
= ~~~~~ ~(X+~i) (5

15~
J~5 

- 3 K . )  

~~~~~~

+ J~
)

I j  J J . J .13 P! + —
~~

-
~~

— + —
~~~~

— +
a a  pj a a  ps a a . ms

(70.1)

where

~2/3a a7a
= 2p(X +2~) [X ÷ ~~A~~ +

V 3K
1
-J
11 3K

5
-J
22 3K

5
-J

33

4 4 4
6~~1i ~~2~~22 

3K
4
-J

33 0
2 2 2

a1 a
2 a

3

3K5—J11 3K4—J22 3K
3
—J

33
2 2 2

a1 a
2 a

3
A =

2 2
31<4 

(a
2+a3

)
— 

2 2  0 0
2a a

3K (a2+a2)
2 22a
1
a
2

2 23K
6 
(a
1
+a.,)

0 0 
2 2

2a
1a2

(70.2)
and
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/Jui’al 
0 0

I j
22~’a2 0 0

0 0 J
33
/a~

2 2

2 2  0
4a2

a
3

B =
2 2

0 0 
J11

a
3
+J

33
a
1

2 24a a

0 0 
J
11
a~+J22a~
4a
1
a2

(7 0.3)

Among the nine integrals there are three immediate relationships

~ll 
= K

1 
+ K6 + 1<

5

= K
6 + K2 + 1<

4 
(7 1.1)

J33 
= K

5 
+ 1<4 + 1<

3

Since it is also clear from Ecs. (61.3) and (64.2) that A is a symmetric

~

matrix , the asymmetric form of E~~. ( 7 0 . 2 )  must be illusory and it can indeed be

verified that

2 2 2 2
3(a2 

- a
3

)K
4 

= a2J33 
- a3

J22

3(4 - 4)K~ = a~J11 
- a~J33 

(71.2)

2 2 2 23(a
1 

- a2
)K
5 

= a1J22 
- a2J11

36
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so that the six K . may all be expressed in terms of the three J’5.

One also finds

— 1 ( dS’
= 
~15p;jj 

= — 8-rr (X+2~ ) j  (x 15
n~ + x~n15

) —jr

2/3

= - 

~~~~ 
[(a l:2:3)_ 

~mp 
- 

4]5~ p 
(72)

where the second term in the bracket comes from subtracting out the delta

function in G .. . We may then write Eq. (60) as*isp ; 33

Ea 
= E~/ ( l  — 4Apg~~~) a = 4,5,6 (7 3.1)

E
1 

= E~ + 2Ap ~(g11 - g13)E
1 

+ (g 12 
- g13)E

2 
- 

X±2~ [(~~~3)
2/3~

11 
-

(73. 2)

E2 
= E~ + 2Au~~Cg 12 

- g23
)E
1 

+ (g 22 
- g23)E2 

- 

~~~~~~~~~~ [(a )2/3 -

(73.3)

*It should be remembered that in 6—vector space a scalar produc t is defined
by A~B A

1
3
1 

+ A~B2 + A
3B3 

+ 2(A1 B4 
+ A

5
8 + A

6
B6) in order to account for

the svmmetrizatio~ of the subscripts ij an~ ji into a single component.
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(l+a) C = C
° — AKc — E

1 
+ (±~ — ~~~~ E

2] 
(73.4)

a1 a3 a2 a3

where c E (a1a2a3
) 2”

~ / (X+2~ ) and AK AX + 4 A u ,  and use has been made

explicitly of the trace condition

V E1 + E 2 + E
3
= 0 . (74)

For a spherical scatterer , a1 
= a2 

= a
3 

= a and J11 
= J22 

= J33 
= 4,

= 1<
2 

= 1<3 
= 4, K~ = 1<5 

= K
6 

= 4 Then we find , from Eq. (70) that

— g13
) = —2Au (g22 

— is just  the “shielding” fac to r , b , p reviously

obtained from the delta function in Eq. (58.2) and that this corresponds also

to —4~ug44 = — 4Aug55 = —4Aug56 = b. Thus, for a spherical scatterer , the only

contributions to the renornialization of the internal strain field are the

shielding factors a and b which arise from the delta function singularity in

Green’s function. For an arbitrary ellipsoid , or for any more general shape ,

we have now explicitly exhibited the volume “polarization” contributions to

this renormalization.

Ellipsoid of Revolution

For an ellipsoidal scatterer with a1 
= a

2 
we then have = J22,

= 1<2 = 3K 6, K4 
= K5, g11 

= g22 ,  and g13 g23 . We also find

38
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2/3
~a/a ) - —1

~ll 
= = 

2(4 
~~~~~~~ 

~~~ 
- 41(a1/a 3

)~ :~ 
u u > 1 (75.1)

1(u) =

2/3  2
(a /a ) a —1

= 
1 ~ —~~[I(a /a — l ] 

sech u u < l  (75.2)

(a 3 - a 1) ~~~~~ u2

~~~~~~~ 3(4 

- J33a~ 
= 

(al
/a3)

2/34 
[4+ 24- 34I(al

/a
3
) (75.3)

2/3

K1 
= 1<2 = 3K6 

= 
~~~ CJ11 

- 1<4
) = [2a~ 

- 544 + 341 (a1
/a
3
)j

(75 .4 )

a /  2/3

K
3 

= - 21<
4 

= 

y

3a
3
I(a

1
/a
3
) - 44 + 4 (75.5)

Then , from Eq. (70.2)

(a / )
2/3

= g22 
= 

2p(X+2u) 
L (X_ u ) 3

11 
- 3(X+u)K1 

(76.1)

(a3
/a1)

213 (X+u)
= 2u(X+2~) 

(J
11 

- K
1) 

(76.2)
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(a /a )
2”3 (X+i.i)

g13 
g23 

— 
2~ (X+2~) 11 

— 

4

2/3
ta /a)

g33 
= 

2p(X+2ij) 
(X— p)J

33 
— 3(X+p)K

3
’ (76.4)

= g55 = - 

2~ (X+2~) [(

~~

)

2/3~ 
+ 3(X+u)K

4~ 
+ 

(
~~
)

413

~uJ33 
+ 3(X+P)K 4~

]

(76.5)

2/3
(a/ a)

g66 
= + 3(X+Ii)K

6~ (76.6)

Using these expressions reduces Eq. (73) to a simpler form , which may be

solved rather directly to give

+ ~) — ycAK (E~ + E~)
C = 

+ 
(77.1)

V 
(l+a)(l + y ) — 4BycAj.thK

where

~ll ~33
2 

- 

2
a
1 

a
3

- 
(a3/a1)

21’
~J11 - 

1/3
X+2~

+
y = 2Au (2g13 

— g11 
—
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(1+a) ( E~ + E)~~ — 4BAuc°
V E1

+ E 2 + 

V 

( 7 7 . 2 )
(l+a)(1 + y ) - 4BycAI.IAK

— E~
E — E = 

1 (77.3)
1 2 1 — 2~$i~g11 

— g12,

These equations then provide the shielding factors for the extended Born

approximation. Given the incident strain field ~~° (r) = E° Cr) + 1 ~ C° ( r )
pm— isp 3 isp —

we use Eqs. (73.1) and (77.1)—(77.3) to provide an accurate first approxi-

mation to insert into Eqs. (25) and (26) for the scattered—wave amplitude

or Eqs. (26) and (38) for the differential scattering cross section , noting

however that the components of the displacement and the strain considered

here are specifically written with respect to a coordinate system

corresponding to the principal axes of the ellipsoid.

The important feature of this solution is that , to this level of

approximation , the general structure of the scattering vector U . given in

Eqs. (42)—(45) above is unchanged. The density component , that involving

Ap/p is exactly as given in those equations. The dilatation and shear

components , involving 
~d 

and will still involve the Fourier transform

of the scattering volume and the shielding factors given in Eqs. (77.1)—

(77.3). In addition , the purely geometrical aspects of the scattering law,

(those due to the projection operators S~ ~2 and 5 — 
~ of the incident V

1.1 5 ~Js ~rJ s

and scattered wave directions) will contribute no more than an “isotrop ic”

component and components proportional to the second order spherical

harmonics , and therefore no more than terms of the form a
0 

+ a
2
cos2~ or

sin29 in the scattering angle , 0. The amplitudes of the various components

41
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will, however , also depend on the orientation of the scattering ellipsoid

with respect to the plane of scattering.

The full implementation of this stage of the analysis has not been

completed.

F. Variational Theorems

Although integral equations are often much more difficult to solve than

the corresponding differential equations , they are often the more convenient

starting point for approximate solutions. This is particularly true when a

complete solution is not needed. In the scattering of elastic waves one has

an ideal example of this sort of approximation . We are not interested in a

complete solution of Eq. (3) or even a complete solution , for all r, of Eq.

(28). What we are interested in is the vector IJ(q) which is given in Eq. (26)

as an integral over the volume of the scatterer. This situation lends itself

ideally to attack by variational methods. To establish a methodology for such

an approach* we consider an unknown function u(x) as the solution of the

integral equation

u(x) = u0(x) +JH(x;~ )u(~)dx
’ (78)

and for which we want to evaluate the integral V

J =ff(x)u)x)dx (79)

In order to define a variational approximation for J we introduce an

adjoint equation

*
A different approach to the formulation of a variation equation has been given V

recently by G. S. Kino (Kino, 1976].

42
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v(x) = f(x) +fH~ (x;~ )v(~)dx’ (80)

where R+(x;x~) is the adjoint operator , such that for any two arbitrary

sufficiently continuous functions , f(x) and g(x),

ff
g(x)H(x;x’) f ( x~dxdx’= fff(x’)H~ (x’;x)g(x)dxdx~

When H(x;x) involves only algebraic factors but no operators (such as 5/ax , V

+ ,
3/ax, etc.), H (x;x) = H(x;x).

Now if we write

Q[~~~] = fu
0(x)~~(x)dx +J~ (x ) f (x ) dx

- fii(x)~~(x)dx + ff~ (x )H (x ;x’)ZI(x5dxdx’ (81) V

we have a variational formulation for the integral J. If the function ~i is equal

to u, the solution of Eq. (78), we find V

Q [u,~~] = fu(x)f(x)dx = J (82.1)

and if ~ is equal to v, the solution of Eq. (80), we find 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~VV V ~~~~~~~V
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Q[~ ,v] = fu
0 (x)v(x)dx

= fu(x)v(x)dx -fJH(x;~ )u(x
’)v (x) dx~x

= ff(x)u(x)dx = J (82.2)

Thus, if ~i and ~ are approximations to the exact solutions of Eqs. (78) and

(80), Q[~i,~ ] is a second order accurate approximation to J. If we set ii = u + r u ,

= v + ~ we find

Q[u+q ,~~~ J = J +ffi(x)H(x;x
’)n(x’)dxdx’

_f ~ (x)f l (x )dx  (83)

so that the error is dependent on the product of the errors of the approximating

functions.

The variational expression Eq. (81) may be easily improved for a scalar

function. Let us write ~i = c
1
u
1
, ~ = c2

v
1 
where c1 and c2 are constants. Thus

if we can assume a shape for u and v we may use the variational process to

define the optimum amplitudes for those functions. Then, with an obvious short— V

hand ,

Q~c1u1, c2v1J = c2(u°,v1) + c
1
(u1,f) — c

1
c
2(u1

,v
1
)

+ c
1
c
2

(v
1
Hu
1

) (84)
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We now differentiate Q with respect to c1 and 02 
and set these expressions to

zero .

(u1,f) = c2
(u
1
,v
1
) - c2

(u
1
Hv
1
)

(u°,v1) 
= c1(u1,

v
1
) - c1

(u
1
Hv
1
)

and from this we find , [Goldstein and Cohen, 1962]

(u1, f)  (u°,v1)J(u1,v1) = ( uV )  — (v Hu ) 
(85)

Equation (85) then represents a formulation of the variational problem which

is homogeneous of degree zero in the trial functions and hence independent of

their normalization.

To apply this formalism to elastic scattering we write Eqs. (28) and (26)

in terms of a nine—component vector, z = (u ,Ca,
Ei,E2

,E)
~
m = 1,2,3, c~ = 4,5,6,

with , of course , E3 
= —E 1 

— E2 , and C
B 

= 4 C + E0, ~ = 1,2,3. Equations (26) 
V

and (28) are then converted into expressions of the form

U.(1) = Jf (r;9,j)z (r)dr (86.1)

and

z (r) = z°(r) + JH (r—r5z (r5dr’ (86 .2 )

~ 
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where

I 0 0 0
I C Cr) E (r) E (r) oo t o  a —  1 2 —  C (r)z (r) = 
\u

(r) 
‘ 1+b ‘ l+b ‘ l+b ‘ l+a (86.3)

The expressions for the matrix elements H can be written out explicitly by

comparing the form of (86.2) with Eqs. (55)—(59). Although this identification

is straightforward , the explicit expression for 9x9 matrix is cumbersome and

need not be given here. The vector f (r;g,j) may also be found from Eq. (26).

For f we find
S

f ( r ;~~;l) = ~~~~~ (? ~~~~~~ — 

~ 
q 3,  

- ~~, - ~~~~~~~~~ q
1
,0, - 

~~~~~~~ 
q
1)

(87.1)

= 
e~-~~-~- 

(o. ~~~~~
- ,o , — ~~~~ q3,O , 

— 
2i~~u q

1
,0, — q2, — 

~~~~~~ 
q
2)

(87 . 2 )

e~~~~~( Ap 2iA~ 2iAu 2iA’i 2iA~ iAK
= 47r tO ,0, p ‘ 

— 

2 q2
, — 

2 q
1
,0, —i-— q3, —~~

--- q3, — —i- q3pw P(ii Qw

(87.3)

The generalization of Eq. (85) is straightforward. One introduces two

trial functions (vectors), ~i Cr) and ~ (r) from which one constructs two vectors5 —  5 —

W and W~ with components

46 
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w = ~~~~~~~~~~~ (88.1)

(not summed on s or p)

= fz (r)~~~(r)dr (88.2)

and a 9x9 matrix W with components
0

= 
~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. (88.3)

Then the variational expression for becomes V

= ww~~W
+

The variational solution for the scattering function U . (~ ) is to be

found by introducing an appropriate set of free parameters into the trial

functions ii and ~ and to determine the “best” values of these free parameters

by requiring that U . be stationary with respect to variation of those parameters .

In fact , since Eq. (89) is already based on an optimization procedure with

respect to a set of linear parameters , a significant improvement in the evalua-

tion of U
1 

comes from inserting an appropriate first approximation for ~i and ~

into Eq. (89) and evaluating the expression with no additional free parameters.

Thus we can use 11 (r) = z°(r) and ~~(r) 
= f (r) as a first approximation . The

integrals involved are essentially just those required for  the Born approxima-

tion (i.e., Fourier transforms with respect to the change in propagation vector).

If the wavelengths are not too short with respect to the dimensions of the

47
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scatterer the Green’s function in H
pm C

~
_
~
) in Eq. (89) may be expanded in

powers of the frequency squared. The requfred integrals may then be evaluated

in a straightforward manner.

When one uses ~~(r) = z°(r) and ~~(r) = f (r) one obtains the w (r) = w+(r)

which allows the “corrected ” Born approximation for the differential scattering

cross section , Eq. (.38.1), to be written in the form

9 2
S~(~2) = q

in
k ~~ q~

0
~~ w (~~

C
,j) (90.1)

3 s 1

and

S
t(~
) = qiflK~K

2~~~ ~~~~~ W ( ~~~~
c

, J ) ~ - q
S~ ~~ w(

~
5c

,j)H

(90.2)

The lowest order variational calculation leads , for example , instead of

Eq. (90.1), to the expression

= q
1n
k~ ~~~ q

SC~~~ w ( q 50
;j)~~~~ 

(91.1)

where

= 

~~~~~~~ 

(W~~) w  . (91.2)
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In the lowest order , long—wavelength , approximation to W , the correction ,

is exactly equiva1er~t to the shielding factors calculated above in Eq. (77).

The accuracy of this variational formulation when applied to ellipsoidal

scatterers can be judged by comparing the variational calculation for a

spherical scatterer with the available exact solution .
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Fig. 1 Geometry for establis~ing a reciprocity theorem for the
scattering function U .
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